Head-in-Pillow BGA Defects

Head-in-pillow (HiP), also known as ball-and-socket, is a solder joint defect where the solder paste deposit wets the pad, but does not fully wet the ball. This results in a solder joint with enough of a connection to have electrical integrity, but lacking sufficient mechanical strength. Due to the lack of solder joint strength, these components may fail with very little mechanical or thermal stress. This potentially costly defect is not usually detected in functional testing, and only shows up as a failure in the field after the assembly has been exposed to some physical or thermal stress.

Head-in-pillow defects have become more prevalent since BGA components have been converted to lead-free alloys. The defect can possibly be attributed to chain reaction of events that begins as the assembly reaches reflow temperatures. Components generally make contact with solder paste during initial placement, and start to flex or warp during heating, which may cause some individual solder spheres to lift. This unprotected solder sphere forms a new oxide layer. As further heating takes place, the package may flatten out, again making contact with the initial solder paste deposit. When the solder reaches the liquidus phase, there isn't sufficient fluxing activity left to break down this new oxide layer, resulting in possible HiP defects. Since component warpage is unpredictable and inconsistent, the focus must turn to the interaction of process variables and those that can be altered to reduce the incidence of HiP defects. These variables include BGA ball alloy, reflow process type, reflow profile, and solder paste chemistry. Each of these variables are studied and discussed below.

Download to continue reading